Search results for " bilinear form"
showing 6 items of 6 documents
Kronecker modules and reductions of a pair of bilinear forms
2004
We give a short overview on the subject of canonical reduction of a pair of bilinear forms, each being symmetric or alternating, making use of the classification of pairs of linear mappings between vector spaces given by J. Dieudonné.
Iterative construction of Dupin cyclides characteristic circles using non-stationary Iterated Function Systems (IFS)
2012
International audience; A Dupin cyclide can be defined, in two different ways, as the envelope of an one-parameter family of oriented spheres. Each family of spheres can be seen as a conic in the space of spheres. In this paper, we propose an algorithm to compute a characteristic circle of a Dupin cyclide from a point and the tangent at this point in the space of spheres. Then, we propose iterative algorithms (in the space of spheres) to compute (in 3D space) some characteristic circles of a Dupin cyclide which blends two particular canal surfaces. As a singular point of a Dupin cyclide is a point at infinity in the space of spheres, we use the massic points defined by J.C. Fiorot. As we su…
Iterative constructions of central conic arcs using non-stationary IFS
2012
Several methods of subdivision exist to build parabola arcs or circle arcs in the usual Euclidean affine plane. Using a compass and a ruler, it is possible to construct, from three weighted points, circles arcs in the affine space without projective considerations. This construction is based on rational quadratic Bézier curve properties. However, when the conic is an ellipse or a hyperbola, the weight computation is relatively hard. As the equation of a conic is $\qaff(x,y)=1$, where $\qaff$ is a quadratic form, one can use the pseudo-metric associed to $\qaff$ in the affine plane and then, the conic geometry is also handled as an Euclidean circle. At each step of the iterative algorithm, t…
Polynomial identities for the Jordan algebra of a degenerate symmetric bilinear form
2013
Let J(n) be the Jordan algebra of a degenerate symmetric bilinear form. In the first section we classify all possible G-gradings on J(n) where G is any group, while in the second part we restrict our attention to a degenerate symmetric bilinear form of rank n - 1, where n is the dimension of the vector space V defining J(n). We prove that in this case the algebra J(n) is PI-equivalent to the Jordan algebra of a nondegenerate bilinear form.
On Einstein bilinear form
2012
From physical motivations and from geometrical interpretations of the Einstein equations, we give a justi cation of the non-triviality and non-degeneracy of Einstein bilinear form introduced in [1].
Convolution of three functions by means of bilinear maps and applications
1999
When dealing with spaces of vector-valued analytic functions there is a natural way to understand multipliers between them. If X and Y are Banach spaces and L(X,Y ) stands for the space of linear and continuous operators we may consider the convolution of L(X,Y )-valued analytic functions, say F (z) = ∑ n=0∞ Tnz , and X-valued polynomials, say f(z) = ∑m n=0 xnz , to get the Y -valued function F ∗ f(z) = ∑ Tn(xn)z. The second author considered such a definition and studied multipliers between H(X) and BMOA(Y ) in [5]. When the functions take values in a Banach algebra A then the natural extension of multiplier is simply that if f(z) = ∑ anz n and g(z) = ∑ bnz , then f ∗ g(z) = ∑ an.bnz n whe…