Search results for " bilinear form"

showing 6 items of 6 documents

Kronecker modules and reductions of a pair of bilinear forms

2004

We give a short overview on the subject of canonical reduction of a pair of bilinear forms, each being symmetric or alternating, making use of the classification of pairs of linear mappings between vector spaces given by J. Dieudonné.

Kronecker modules bilinear forms.Settore MAT/04 - Matematiche Complementari
researchProduct

Iterative construction of Dupin cyclides characteristic circles using non-stationary Iterated Function Systems (IFS)

2012

International audience; A Dupin cyclide can be defined, in two different ways, as the envelope of an one-parameter family of oriented spheres. Each family of spheres can be seen as a conic in the space of spheres. In this paper, we propose an algorithm to compute a characteristic circle of a Dupin cyclide from a point and the tangent at this point in the space of spheres. Then, we propose iterative algorithms (in the space of spheres) to compute (in 3D space) some characteristic circles of a Dupin cyclide which blends two particular canal surfaces. As a singular point of a Dupin cyclide is a point at infinity in the space of spheres, we use the massic points defined by J.C. Fiorot. As we su…

Pure mathematicsEnvelope of spheresMathematical analysisDupin cyclideDupin cyclideTangent[ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR]Singular point of a curveComputer Graphics and Computer-Aided DesignIndustrial and Manufacturing Engineering[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]Computer Science ApplicationsCircleIterated function systemDefinite symmetric bilinear formConic sectionSpace of spheresSubdivisionPoint (geometry)Mathematics::Differential GeometryPoint at infinityEnvelope (mathematics)Mathematics
researchProduct

Iterative constructions of central conic arcs using non-stationary IFS

2012

Several methods of subdivision exist to build parabola arcs or circle arcs in the usual Euclidean affine plane. Using a compass and a ruler, it is possible to construct, from three weighted points, circles arcs in the affine space without projective considerations. This construction is based on rational quadratic Bézier curve properties. However, when the conic is an ellipse or a hyperbola, the weight computation is relatively hard. As the equation of a conic is $\qaff(x,y)=1$, where $\qaff$ is a quadratic form, one can use the pseudo-metric associed to $\qaff$ in the affine plane and then, the conic geometry is also handled as an Euclidean circle. At each step of the iterative algorithm, t…

ellipsehyperbolaIFS.subdivision[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR]IFSdefinite symmetric bilinear formcircle
researchProduct

Polynomial identities for the Jordan algebra of a degenerate symmetric bilinear form

2013

Let J(n) be the Jordan algebra of a degenerate symmetric bilinear form. In the first section we classify all possible G-gradings on J(n) where G is any group, while in the second part we restrict our attention to a degenerate symmetric bilinear form of rank n - 1, where n is the dimension of the vector space V defining J(n). We prove that in this case the algebra J(n) is PI-equivalent to the Jordan algebra of a nondegenerate bilinear form.

Discrete mathematicsSymmetric algebraNumerical AnalysisPure mathematicsAlgebra and Number TheoryJordan algebraRank (linear algebra)Symmetric bilinear formPolynomial identities gradings Jordan algebraOrthogonal complementBilinear formSettore MAT/02 - AlgebraDiscrete Mathematics and CombinatoricsGeometry and TopologyAlgebra over a fieldMathematicsVector spaceLinear Algebra and its Applications
researchProduct

On Einstein bilinear form

2012

From physical motivations and from geometrical interpretations of the Einstein equations, we give a justi cation of the non-triviality and non-degeneracy of Einstein bilinear form introduced in [1].

[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]quantum group Einstein equations bilinear formComputingMilieux_MISCELLANEOUS
researchProduct

Convolution of three functions by means of bilinear maps and applications

1999

When dealing with spaces of vector-valued analytic functions there is a natural way to understand multipliers between them. If X and Y are Banach spaces and L(X,Y ) stands for the space of linear and continuous operators we may consider the convolution of L(X,Y )-valued analytic functions, say F (z) = ∑ n=0∞ Tnz , and X-valued polynomials, say f(z) = ∑m n=0 xnz , to get the Y -valued function F ∗ f(z) = ∑ Tn(xn)z. The second author considered such a definition and studied multipliers between H(X) and BMOA(Y ) in [5]. When the functions take values in a Banach algebra A then the natural extension of multiplier is simply that if f(z) = ∑ anz n and g(z) = ∑ bnz , then f ∗ g(z) = ∑ an.bnz n whe…

Discrete mathematicsSymmetric bilinear formSesquilinear formGeneral MathematicsBanach spaceOrthogonal complementBilinear formMultiplier (Fourier analysis)46E40Tensor productInterpolation space46B2846G25MathematicsIllinois Journal of Mathematics
researchProduct